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Fluctuation-induced memory retrieval in a pulsed neural network storing sparse patterns
with hierarchical correlations
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An associative memory in a pulsed neural network composed of the FitzHugh-Nagumo models storing
sparse patterns with hierarchical correlations is investigated. The memory patterns composed of 0/1 digits are
represented by the synchronous periodic firings of the neurons. It is found that the target pattern and theOR

pattern are retrieved individually by controlling the intensity of fluctuations in the system.
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I. INTRODUCTION

The associative memory in neural networks has been
vestigated for more than 20 years. In the autocorrelative
sociative memory model, the bit patterns are stored in
connection coefficients of the network and the stored p
terns are retrieved using the neural dynamics. The sto
capacity of the network is analyzed extensively by numer
researchers and it is known that the storage capacity
sparse patterns diverges as the firing rate of the pattern
proaches zero. The coding of the memory is called ‘‘spar
when the number of excited neurons is much smaller t
that of quiescent ones, in other words, the firing rate of
network is small. The existence of sparsely encoded asso
tive memory in the brain is discussed in physiological e
periments@1#.

On the other hand, it is known that the mixed states of
stored patterns, which are nonlinear superpositions of sto
patterns, also become equilibria of the network@2,3#. The
typical mixed states are theOR patterns, theAND patterns,
and the majority decision mixed states@2#. In a broad sense
such mixed states are the models of the mutually correla
memories that are experimentally observed@4#. In Ref. @3#,
the dynamics of the network storing memory patterns w
hierarchical correlations is analyzed and the mixed state
stored patterns are considered. Such mixed states ma
interpreted as unnecessary patterns that accompany
stored patterns, but some researchers relate the stabiliz
of mixed states of stored patterns with a ‘‘concept form
tion’’ @5# and discuss the validity of this relation in the phys
ological experiments@2,6#.

Conventionally, the carrier of the information in assoc
tive memory models is thought to be the firing rate of
single neuron or an ensemble of neurons. However, ne
networks composed of spiking neurons also show the p
erties of associative memory@7–11#, and have attracted con
siderable attentions in recent years. In those systems,
following models are often used as spiking neurons:
Hodgkin-Huxley model, which describes the dynamics
squid giant axons; the FitzHugh-Nagumo model, which
the reduced model of the Hodgkin-Huxley model; and
leaky integrate-and-fire model, which has an internal s
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governed by a linear differential equation and a spiki
mechanism with a threshold. The couplings among th
neurons are accompanied with time delays that model
time lag from the presynaptic neuron to the postsynaptic n
ron, and the memory is represented in the spatiotemp
firing pattern of the neurons.

Meanwhile, the physiological environment where neuro
operate is thought to have several sources of randomn
such as, thermal noise, stochastic properties of syna
@12,13#, and the sum of enormous presynaptic inputs@14#,
thus the effect of the fluctuation may not be neglected. G
erally, stochastic resonance~SR! is a well-known phenom-
enon where a weak input signal is enhanced by its ba
ground fluctuation and observed in many nonlinear syste
@15–18#. The theoretical works on SR in a single neuron a
performed on the integrate-and-fire model@19#, the leaky
integrate-and-fire model@20,21#, the FitzHugh-Nagumo
model @22–24#, and the Hodgkin-Huxley model@25#. In
those works, it is observed that the output signal-to-no
ratio ~SNR! @23,25# or the peak height of the interspike in
terval distribution@19–22# takes a maximum as a function o
the fluctuation intensity. Some physiological experiments
inforce the hypothesis that the neural system utilizes SR
detect weak signals@26–29#. In Ref. @26#, Douglasset al.
investigated sinusoidally stimulated mechanoreceptor c
of a crayfish with additive fluctuations and observed the
istence of the optimal fluctuation intensity that maximiz
the output SNR. In Ref.@27#, Peiet al. observed SR in cau
dal photoreceptor interneurons of a crayfish by intrinsic a
not external fluctuations. Recently, theoretical works on
in spatially extended systems are performed and the role
fluctuations in neural systems are discussed@30,31#. In Ref.
@10#, associative memory in a pulsed neural network w
fluctuations is considered, and the memory retrieval is
duced by the suitable amount of fluctuations. This pheno
enon might relate to stochastic resonance.

In the present paper, we treat the sparsely encoded a
ciative memory in a network of the FitzHugh-Nagumo mo
els and consider the effect of fluctuations in the system
Sec. II, a coupled FitzHugh-Nagumo model and some qu
tities are defined. In Sec. III, the stored six patterns w
hierarchical correlations are defined. In Sec. IV, the result
©2001 The American Physical Society04-1
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TAKASHI KANAMARU AND YOICHI OKABE PHYSICAL REVIEW E 64 031904
numerical simulations are presented. It is shown that the
get pattern and theOR pattern, which is one of the mixe
patterns are retrieved individually by controlling the fluctu
tion intensity. In Sec. V, theoretical analyses are presen
Conclusions and discussions are given in the final sectio

II. ASSOCIATIVE MEMORY OF SPIKING NEURONS

In the following, as a model of associative memory, w
treat a coupled FitzHugh-Nagumo~FN! model written as

t
dui

dt
52v i1ui2

ui
3

3
1Si~ t !1h i~ t !

1(
j 51

N

Ji j (
kPk( i , j )

a~ t2t j
k2dp!, ~1!

dv i

dt
5ui2bv i1g, ~2!

a~ t !5gpeak

t

t0
expS 12

t

t0
D , ~3!

^h i~ t !h j~ t8!&5Dd i j d~ t2t8!, ~4!

k~ i , j ![$kut i
f~ t !2dp,t j

k,t2dp%, ~5!

where b50.8, g50.7, t50.1, ui is the fast variable tha
denotes the membrane potential of the neuron,v i is the slow
variable that represents the refractoriness,Si(t) is the exter-
nal input,h i(t) is a Gaussian white noise,t j

k is thekth firing
time of the j th neuron, the firing time is defined as the tim
when ui(t) exceeds an arbitrary thresholdu, t i

f(t) is the
latest firing time of thei th neuron at timet, dp is the uniform
time delay, anda(t) is the alpha function with the heigh
gpeak. The alpha function@32# models the excitatory
postsynaptic potential~EPSP! @33# that has a positive influ-
ence on the postsynaptic membrane potential caused by
arrival of the presynaptic signal. The FN model is a gene
reduced model of the Hodgkin-Huxley equation, which is
qualitative model of the squid giant axon and often used
describe the behaviors of a single neuron. Note that our
model with the above parameters shows a typical charac
istic of a neuron, namely, it has a stable rest state, and
an appropriate amount of disturbance it generates a p
with a characteristic magnitude of height and width. T
time series ofu1(t) for Si(t)50, Ji j 50, andD50.002 is
shown in Fig. 1. It is observed that two spikes are genera
with the help of fluctuations. In the following, the paramete
are fixed atdp53, gpeak50.5, t051, andu50. The validity
of these synaptic parameters is discussed later.

The memory patterns stored in the network are define
follows. First, pattern vectorsjm5(j1

m ,j2
m , . . . ,jN

m) (m
51,2, . . . ,p) are randomly generated according to the pro
ability density

P~j i
m!5~12a!d~j i

m!1ad~j i
m21!, ~6!
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whered(x) denotes the delta function anda (0<a<1) is
the average ofj i

m . The dynamics of a network storing th
patterns witha50.5 is investigated in Ref.@10#. In the fol-
lowing, sparse patterns witha50.1 are treated.

Next, by applying the bit transformations toj i
m , p1

groups of patterns composed ofp2 patterns with overlapb
are obtained. Note that the relationshipp5p1p2 holds and
the overlap between the patternsj andz is defined as

m~j,z![
1

Na~12a! (
i 51

N

~j i2a!~z i2a!. ~7!

Let us denote thej th pattern in thei th group asz ( i , j ). The
overlap between two patterns that belong to different gro
takes zero, namely, the patterns have hierarchical corr
tions @3# characterized by

m~z ( i , j ),z (k,l )!5„b1~12b!d j l …d ik , ~8!

~1< i ,k<p1 , 1< j ,l<p2!.

Following Yoshioka and Shiino@9#, to make the network
store the abovep patternsz (k,l ) (1<k<p1 ,1< l<p2), the
connection coefficientsJi j are defined as

Ji j 5
1

Na~12a! (
k51

p1

(
l 51

p2

z i
(k,l )~z j

(k,l )2a!. ~9!

Note that the matrixJi j }(z i
(k,l )(z j

(k,l )2a) is used instead of
the usualJi j }((z i

(k,l )2a)(z j
(k,l )2a) so as not to give nega

tive inputs to the neurons that store 0’s, because the
model can fire even with the negative input due to the
bound effect@34#. It is also noted that Eqs.~1! and ~9! indi-
cate that the coupling from thej th neuron to thei th neuron
with z i

(k,l )5z j
(k,l )51 has the strength;gpeak/Na. The FN

model with our parameters generates a spike when a si
EPSP with height;0.1 is injected~data not shown!, thus
0.1Na/gpeak synchronized EPSPs are required to make
postsynaptic neuron to generate a spike. Thus, for largeN, it
is concluded that the effect of a single presynaptic neuro
weak, which is consistent with the recent physiological o
servations@14#.

FIG. 1. A typical time series ofu1(t) for Si(t)50, Ji j 50, and
D50.002. Two spikes are observed.
4-2
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FLUCTUATION-INDUCED MEMORY RETRIEVAL IN A . . . PHYSICAL REVIEW E64 031904
The OR pattern vector zOR(k)

5(z1
OR(k) ,z2

OR(k) , . . . ,zN
OR(k)) of the kth group is defined as

z i
OR(k)5US (

l 51

p2

z i
(k,l )D , ~10!

U~x!5H 1 if x.0,

0 otherwise.
~11!

Generally, the mixed states of stored patterns in thekth
group is defined as

z i
mix(k)5US (

l 51

p2

z i
(k,l )2Q D , ~12!

whereQ is an arbitrary threshold@2#. Note thatp2 mixed
states are defined by changingQ, and forQ50 theOR pat-
terns are obtained. It is known that the mixed states of
stored patterns are also memorized in the network@2,3#. The
storage capacity of theOR patterns diverges in the spars
limit a→0, and the storage capacities of other mixed sta
converge to 0 in the limita→0. Thus theOR patterns are
‘‘typical’’ mixed states in the sparse limit. In the following
we consider only theOR patterns as the mixes states of stor
patterns.

The external inputSi(t) is defined as

Si~ t !5xiU0U~ t !, xiP$0,1%, ~13!

5H xiU0 if t>0,

0 otherwise,
~14!

where xi is the binary factor that determines whether t
input is injected to thei th neuron or not. In the following,U0
is fixed atU050.1, which is so small that each neuron ca
not fire without the fluctuationh i(t). Using the binary vector
x5(x1 ,x2 , . . . ,xN) of the input, the input overlapmin

(k,l ) ,
which measures the correlation between the patternz (k,l )

5(z1
(k,l ) ,z2

(k,l ) , . . . ,zN
(k,l )) and the external inputS(t)

5@S1(t),S2(t), . . . ,SN(t)#, is defined as

min
(k,l )5m~z (k,l ),x!. ~15!

To measure the correlation between the patternz (k,l ) and
the time seriesui(t) ( i 51,2, . . . ,N), ui(t) is transformed
into the binary seriesyi(t)P$0,1% written as

yi~ t !5H 1 if t,t i
f~ t !1Dd,

0 otherwise,
~16!

where the parameterDd is set close to the characterist
width of the output pulse, andDd54 is used in the follow-
ing. Then the overlap between the state of the network
the patternz is defined as

mout5
1

N f~12 f ! (
i 51

N

~yi2 f !~z i2 f !, ~17!
03190
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z i . ~18!

In the following sections, we demonstrate that the tar
patternz (1,1) and theOR patternzOR(1) of the first group can
be retrieved individually by controlling the fluctuation inten
sity D.

III. DEFINITION OF SIX PATTERN VECTORS

In the following, only the case witha50.1, p152, and
p253 is considered for simplicity. The larger the number
neurons becomes, the more groups or patterns can be st
and similar results shall be obtained, but we must perfo
the numerical experiments with relatively smallN, p1, and
p2 mainly because of the limited computational power.

A schematic diagram of six patternsz (k,l ) (k51,2,l
51,2,3) is shown in Fig. 2. In this section, we define the
six pattern vectors. First, let us denote the set of indices
neurons that store 1’s in the patternz (k,l ) by

G~k,l !5$ i uz i
(k,l )51,1< i<N%. ~19!

The setsG(1,l ) in the space of neuron indices are shown
Fig. 3. Note that the number of elements of the setG(k,l ) is

uG~k,l !u5(
i 51

N

z i
(k,l )5Na. ~20!

Because the overlap between the patternsz (k,l 1) and z (k,l 2)

( l 1Þ l 2) is b, the number of elements of the intersection
G(k,l 1) andG(k,l 2) is calculated to be

FIG. 2. A schematic diagram of six pattern vectors.

FIG. 3. The setsG(1,l ) in the space of neuron indices.
4-3
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TAKASHI KANAMARU AND YOICHI OKABE PHYSICAL REVIEW E 64 031904
uG~k,l 1!ùG~k,l 2!u5(
i 51

N

z i
(k,l 1)

z i
(k,l 2) , ~21!

5Na~a1b2ab! ~ l 1Þ l 2!. ~22!

Though the number of elements of the s
G(k,1)ùG(k,2)ùG(k,3) is not determined by the param
etersa andb, we assume that the probability that the elem
of G(k,1)ùG(k,2) belongs toG(k,1)ùG(k,2)ùG(k,3) is
identical with the probability that the element ofG(k,1) be-
longs toG(k,3). Under such an assumption, the number
elements of the setG(k,1)ùG(k,2)ùG(k,3) is calculated to
be

uG~k,1!ùG~k,2!ùG~k,3!u5Na~a1b2ab!2. ~23!

Thus the number of elements of the s
G(1,1)øG(1,2)øG(1,3) is Na@323(a1b2ab)1(a1b
2ab)2#, and we denote it asNall in the following.

Without loss of generality, the patternz (1,1) can be defined
as

z i
(1,1)5H 1, 1< i<Na524

0 otherwise,
~24!

andz (1,2) andz (1,3) are defined so that theOR patternzOR(1)

of the first group satisfies

z i
OR(1)5H 1, 1< i<Nall562

0 otherwise.
~25!

The patternsz (2,l ) ( l 51,2,3) are determined randomly s
that they satisfy Eq.~8!.

IV. FLUCTUATION-INDUCED PATTERN SELECTION

Under the above configurations, numerical simulatio
are performed forN5240, a50.1, b50.07, and min

(1,1)

50.6. At the timet50, the variablesui andv i are set around
the equilibrium, namely,ui.21.2 andv i.20.63.

The firing times of all the neurons for the fluctuation i
tensityD50.001 are shown in Fig. 4~a!. It is observed that
the neurons that store 1’s in the patternz (1,1) start to fire
periodically att.50. Let us denote the overlap between t
state of the network and the patternz (1,1) as m(1,1), and the
overlap between the state of the network and theOR pattern
zOR(1) of the first group asmOR(1). The time series of over
laps m(1,1) and mOR(1) are shown in Fig. 4~b!. The overlap
m(1,1) almost reaches 1 att.50, thus the retrieval of patter
z (1,1) is successful.

The result of the numerical simulation forD50.017 is
shown in Fig. 5. At smallt, the patternz (1,1) is retrieved, but
at t.80, it is observed thatmOR(1) exceedsm(1,1), thus in
this case theOR patternzOR(1) is successfully retrieved.

From the above results, it can be concluded that the ta
pattern is retrieved for the small fluctuation intensity, and
OR pattern is retrieved for the moderate fluctuation intens

In Fig. 6, the asymptotic values of overlapsm(1,1) and
mOR(1) are plotted against the fluctuation intensityD. It is
03190
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observed that the overlapm(1,1) takes a maximum atD
.0.001. This phenomenon is similar to so-called stocha
resonance, where a weak input signal is enhanced by
background fluctuations. It is also observed that the ove
mOR(1) takes a maximum atD.0.0017. Thus it can be con
cluded that the target pattern and theOR pattern can be re-
trieved individually by controlling the fluctuation intensity
In other words, a pattern selection is induced by the fluct
tions in the system. While the fluctuation-induced patte
retrieval has already been reported in Ref.@10#, the present
result indicates that the fluctuation can play more functio
roles such as pattern selection.

If the fluctuations are realized by thermal noise, it shall
difficult to control their intensities in the biological environ
ment. On the other hand, it is known that the sum of en
mous random EPSPs can behave like fluctuations in
postsynaptic neuron@14,35#. If the sum of EPSPs from the
other subnetwork in the brain behaves like fluctuations in
associative network, it might be natural and realizable
control their intensities. It is also known that such a fluctu
tionlike input can induce SR in a single neuron model@36–
41#.

To realize the fluctuation-induced pattern selection,
overlapb between the patterns in the identical group is a
important. The asymptotic values of the overlaps as a fu
tion of the fluctuation intensityD for b50 and 0.1 are shown
in Figs. 7 and 8, respectively. Forb50, it is observed that

FIG. 4. The result of numerical simulation,~a! the firing times
of all the neurons and~b! the overlapsm(1,1) and mOR(1) for N
5240, b50.07, andD50.001. The retrieval of the patternz (1,1) is
successful.
4-4
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FLUCTUATION-INDUCED MEMORY RETRIEVAL IN A . . . PHYSICAL REVIEW E64 031904
only the target patternz (1,1) is successfully retrieved and th
retrieval ofzOR(1) fails. For b50.1, it is observed that only
the OR patternzOR(1) is successfully retrieved and the r
trieval of z (1,1) fails. Thus it is concluded that the overlapb
between the patterns in the identical group is importan
retrieve both the target pattern and theOR pattern. In biologi-
cal systems, such a regulation ofb might be realized during
the learning process of patterns@4#.

As shown in Figs. 4 and 5, there is a characteristic ti

FIG. 5. The result of numerical simulation,~a! the firing times
of all the neurons and~b! the overlapsm(1,1) and mOR(1) for N
5240, b50.07, andD50.0017. The retrieval of theOR pattern
zOR(1) is successful.

FIG. 6. The asymptotic values of the overlapsm(1,1) andmOR(1)

as a function of the fluctuation intensityD for N5240 and b
50.07. Each overlap is numerically obtained by averaging
value over 150<t<200.
03190
o
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required for the retrieval of patterns. Let us define the pe
ods to retrieve the patternsz (1,1) and zOR(1) as T(1,1) and
TOR(1), respectively. The dependences ofT(1,1) and TOR(1)

on the fluctuation intensityD for b50.07 are shown in Fig.
9. It is observed thatT(1,1) and TOR(1) diverge at D
50.0009 and 0.0013, respectively. It is because the retrie
of patterns is realized by the saddle-node bifurcation with
parameterD. This dynamics is treated in the next section.

V. THEORETICAL ANALYSIS OF FLUCTUATION-
INDUCED PATTERN SELECTION

In this section, we give a qualitative explanation for t
fluctuation-induced pattern selection. In the following, t
system withp151 andp253, namely, a network that store
three patternsz (1,l ) ( l 51,2,3) with overlapb is considered
for simplicity. The external input is injected only to the ne
rons in the setG(1,1), namely,x5z (1,1). In the following,
we treat only the dynamics of the neurons in the
G(1,1)øG(1,2)øG(1,3) for simplicity.

As shown in Fig. 10, two variableszn andsn are defined
as the number of the firing neurons and the standard de
tion of the firing times in the narrow time interval, respe
tively. The width of the time interval is set at a value arou

e

FIG. 7. The asymptotic values of the overlapsm(1,1) andmOR(1)

as a function of the fluctuation intensityD for N5240 andb50.
Each overlap is numerically obtained by averaging its value o
150<t<200. Only the target pattern is successfully retrieved.

FIG. 8. The asymptotic values of the overlapsm(1,1) andmOR(1)

as a function of the fluctuation intensityD for N5210 andb50.1.
Each overlap is numerically obtained by averaging its value o
150<t<200. Only theOR pattern is successfully retrieved.
4-5
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the time delay of the network, namely, the period of t
periodic firing. In the following, the discrete-time dynami
of (sn ,zn) (n50,1,2, . . . ) is considered. This analysis i
similar to the theoretical analysis of the propagation of s
chronized spikes in the feedforward synfire chain@42#. The
numerical simulations are performed forNa5100, p151,
andp253.

The numerically obtained flows in the (s,z) plane forD
50.0005 are shown in Fig. 11~a!. Note that the numberzn of
the firing neurons is normalized by the number of the n
rons that store 1’s in the patternz (1,1), namely,Na. Three
attractors in the (s,z) plane are observed. One is~0,0!, and
the rest are the attractors corresponding toz (1,1) andzOR(1).
The reason why the attractor denotingzOR(1) is not a single
node but a linez.2.6 is given later. When the number of th
initially firing neurons is sufficiently small, namely,z0.0, it
is observed that (sn ,zn) converges to~0,0!. In other words,
the memory retrieval fails forz0.0 with D50.0005 because
almost all the neurons cannot fire with this fluctuation inte
sity. Note that the system cannot cross the dotted curve a
zn.0.2 shown in Fig. 11~a!, which shows the boundary o
the basins for the attractors~0,0! and z (1,1). This boundary
seems to be the stable manifold of a saddle at about (s,z)

FIG. 9. The dependences ofT(1,1) andTOR(1) on the fluctuation
intensityD for b50.07. The data are obtained by taking the me
values of 100– 200 samples. The number of samples depends o
fluctuation intensityD.

FIG. 10. The definition of the two variableszn and sn . The
width of the time interval is set at a value around the time delay
the network, namely, the period of the periodic firing.
03190
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FIG. 11. The flows in the (s,z) plane forD50.0005.~a! The
numerically obtained flows and~b! the schematic flows deduce
from ~a!.

FIG. 12. The flows in the (s,z) plane forD50.0012.~a! The
numerically obtained flows and~b! the schematic flows deduce
from ~a!.
4-6
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FLUCTUATION-INDUCED MEMORY RETRIEVAL IN A . . . PHYSICAL REVIEW E64 031904
5(0.4,0.2) shown in Fig. 11~b!.
The numerically obtained flows in the (s,z) plane forD

50.0012 are shown in Fig. 12~a!. The attractor at about~0,0!
disappears because of a saddle-node bifurcation, thus t
system initially put at~0,0! converges to the attractor at
about~0.15,1!, which denotes the patternz (1,1).

The numerically obtained flows in the (s,z) plane forD
50.002 are shown in Fig. 13. The attractor that denotes th
patternz (1,1) disappears because of a saddle-node bifurcatio
again, thus the system initially put at~0,0! converges to the
line at z.2.6 that denotes the patternzOR(1).

As previously noted, the patternzOR(1) cannot be denoted
by a single node in the (s,z) plane, because all the neurons
that store 1’s inzOR(1) cannot synchronize each other as
shown in Fig. 14. The step inputs are injected to the neuron
that store 1’s in the patternz (1,1), thus they fire slightly ear-
lier than the other neurons.

VI. CONCLUSIONS AND DISCUSSIONS

The associative memory in a pulsed neural network sto
ing sparse patterns with hierarchical correlations is invest
gated. The stored memory patterns composed of 0/1 digi
are represented by the synchronous periodic firings in th
network. It is found that the retrieval of the target pattern is
achieved by adding fluctuations to the system. This phenom
enon is similar to so-called stochastic resonance, where
weak input signal is enhanced by its background fluctuation
Though there is no time-dependent input in our network, th
mechanism of associative memory is driven and enhanced
fluctuations. Besides the target pattern, theOR pattern that is
the nonlinear superposition of the three patterns that belon
to the identical group is also retrieved with the help of fluc-
tuations and its optimal fluctuation intensity is larger than
that of the target pattern. Thus the target pattern and theOR

FIG. 13. The numerically obtained flows in the (s,z) plane for
D50.002.
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pattern are retrieved individually by controlling the fluctua
tion intensity, in other words, a fluctuation-induced patter
selection takes place. The theoretical analysis of the abo
results is also presented, and it is found that the fluctuatio
induced pattern selection is realized by the success
saddle-node bifurcations parameterized by the fluctuation
tensity.

TheOR pattern may be interpreted as unnecessary patte
that accompany with stored patterns, but some research
relate the stabilization of mixed states of stored patterns w
a ‘‘concept formation’’@5#, and discuss the validity of this
relation in the physiological experiments@2,6#. If the OR pat-
tern is meaningful in the information processing, the abov
results suggest that the fluctuations in the system might p
significant roles in the brain.

There are several sources of randomness in the phy
ological environment where neurons operate, such as, th
mal noise, stochastic properties of synapses@12,13#, and the
sum of enormous presynaptic inputs@14#. It is difficult to
control the intensity of thermal noise, but, if the stochastici
of synapses or the sum of enormous presynaptic inputs ac
fluctuations, it might be natural to control their intensities b
the synaptic potentiation and depression. It is known th
stochastic resonance also takes place by fluctuationl
presynaptic inputs@36–41#.

Recently, a psychological experiment revealed that
moderate magnitude of acoustic noise minimizes the r
sponse time to retrieve memories@43#. Though our results
are based on numerical simulations, this experiment may
late to the fluctuation-induced memory retrieval and sugge
that fluctuations may play a significant role in the real brai
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FIG. 14. The firing times of all the neurons in the system fo
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