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Fluctuation-induced memory retrieval in a pulsed neural network storing sparse patterns
with hierarchical correlations
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An associative memory in a pulsed neural network composed of the FitzHugh-Nagumo models storing
sparse patterns with hierarchical correlations is investigated. The memory patterns composed of 0/1 digits are
represented by the synchronous periodic firings of the neurons. It is found that the target patternand the
pattern are retrieved individually by controlling the intensity of fluctuations in the system.
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[. INTRODUCTION governed by a linear differential equation and a spiking
mechanism with a threshold. The couplings among those
The associative memory in neural networks has been inreurons are accompanied with time delays that model the
vestigated for more than 20 years. In the autocorrelative agime lag from the presynaptic neuron to the postsynaptic neu-
sociative memory model, the bit patterns are stored in theon, and the memory is represented in the spatiotemporal
connection coefficients of the network and the stored patfiring pattern of the neurons.
terns are retrieved using the neural dynamics. The storage Meanwhile, the physiological environment where neurons
capacity of the network is analyzed extensively by numerousperate is thought to have several sources of randomness,
researchers and it is known that the storage capacity fasuch as, thermal noise, stochastic properties of synapses
sparse patterns diverges as the firing rate of the pattern apt2,13, and the sum of enormous presynaptic inpit4],
proaches zero. The coding of the memory is called “sparse'thus the effect of the fluctuation may not be neglected. Gen-
when the number of excited neurons is much smaller thaerally, stochastic resonan¢8R) is a well-known phenom-
that of quiescent ones, in other words, the firing rate of theenon where a weak input signal is enhanced by its back-
network is small. The existence of sparsely encoded associground fluctuation and observed in many nonlinear systems
tive memory in the brain is discussed in physiological ex-[15—18. The theoretical works on SR in a single neuron are
perimentg 1]. performed on the integrate-and-fire mod&B], the leaky
On the other hand, it is known that the mixed states of thentegrate-and-fire model[20,21], the FitzHugh-Nagumo
stored patterns, which are nonlinear superpositions of storemhodel [22—24], and the Hodgkin-Huxley mod€]25]. In
patterns, also become equilibria of the netw2k3]. The those works, it is observed that the output signal-to-noise
typical mixed states are ther patterns, theanD patterns, ratio (SNR) [23,25 or the peak height of the interspike in-
and the majority decision mixed stated. In a broad sense, terval distribution19—22 takes a maximum as a function of
such mixed states are the models of the mutually correlatethe fluctuation intensity. Some physiological experiments re-
memories that are experimentally obseryédl In Ref.[3], inforce the hypothesis that the neural system utilizes SR to
the dynamics of the network storing memory patterns withdetect weak signalg26—29. In Ref. [26], Douglasset al.
hierarchical correlations is analyzed and the mixed states dfvestigated sinusoidally stimulated mechanoreceptor cells
stored patterns are considered. Such mixed states may béa crayfish with additive fluctuations and observed the ex-
interpreted as unnecessary patterns that accompany witktence of the optimal fluctuation intensity that maximizes
stored patterns, but some researchers relate the stabilizatitimee output SNR. In Ref.27], Peiet al. observed SR in cau-
of mixed states of stored patterns with a “concept forma-dal photoreceptor interneurons of a crayfish by intrinsic and
tion” [5] and discuss the validity of this relation in the physi- not external fluctuations. Recently, theoretical works on SR
ological experiment§2,6]. in spatially extended systems are performed and the roles of
Conventionally, the carrier of the information in associa-fluctuations in neural systems are discuskz@31]. In Ref.
tive memory models is thought to be the firing rate of a[10], associative memory in a pulsed neural network with
single neuron or an ensemble of neurons. However, neurdlluctuations is considered, and the memory retrieval is in-
networks composed of spiking neurons also show the propduced by the suitable amount of fluctuations. This phenom-
erties of associative memofy—11], and have attracted con- enon might relate to stochastic resonance.
siderable attentions in recent years. In those systems, the In the present paper, we treat the sparsely encoded asso-
following models are often used as spiking neurons: theciative memory in a network of the FitzHugh-Nagumo mod-
Hodgkin-Huxley model, which describes the dynamics ofels and consider the effect of fluctuations in the system. In
squid giant axons; the FitzHugh-Nagumo model, which isSec. Il, a coupled FitzHugh-Nagumo model and some quan-
the reduced model of the Hodgkin-Huxley model; and thetities are defined. In Sec. lll, the stored six patterns with
leaky integrate-and-fire model, which has an internal statéierarchical correlations are defined. In Sec. IV, the results of
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numerical simulations are presented. It is shown that the tar- 2
get pattern and theRr pattern, which is one of the mixed
patterns are retrieved individually by controlling the fluctua- 1t
tion intensity. In Sec. V, theoretical analyses are presented.
Conclusions and discussions are given in the final section. u, ()0t
Il. ASSOCIATIVE MEMORY OF SPIKING NEURONS 1 M
In the following, as a model of associative memory, we
treat a coupled FitzHugh-Naguni6N) model written as 2
du uiS 0 20 40 ; 60 80 100
T - T UituiT g SO+ 7
FIG. 1. Atypical time series ofi,(t) for S(t)=0, J;=0, and
N D=0.002. Two spikes are observed.
+2 3 > a(t—ti—d,), (1) . .
=1 “kex(ij) where §(x) denotes the delta function ared(O<a<1) is
the average ot!. The dynamics of a network storing the
%=u-—,8 4 @) patterns witha= 0.5 is investigated in Ref10]. In the fol-
dt i PUIT Y lowing, sparse patterns with=0.1 are treated.
Next, by applying the bit transformations t&*, p;
t t groups of patterns composed pj patterns with overlag
a(t):gpeakgex 1- &)’ (3)  are obtained. Note that the relationstgg: p,p, holds and
the overlap between the patterfiand { is defined as
(mi()p;(t"))=Dg;o(t—t"), (4) 1 N
M=o & E-ag-a). (@
k(i) =K () — dp<ti<t—d,}, (5) Na(l-a) = '

where 8=0.8, y=0.7, 7=0.1, ; is the fast variable that Let us denote th¢th pattern in theith group as¢"-. The

denotes the membrane potential of the neuteris the slow overlap between two patterns that belong ﬁo dlffe_rent groups

variable that represents the refractorinegét) is the exter- t_akes zero, name_ly, the patterns have hierarchical correla-

nal input, 7,(t) is a Gaussian white noist; is thekth fiing ~ 1ONS [3] characterized by

time of thejth neuron, the firing time is defined as the time

when u;(t) exceeds an arbitrary thresholt tif(t) is the

latest firing time of theth neuron at time, d, is the uniform

time delay, anda(t) is the alpha function with the height

Opeak- The alpha function[32] models the excitatory

postsynaptic potentidEPSP [33] that has a positive influ-

ence on the postsynaptic membrane potential caused by t

arrival of the presynaptic signal. The FN model is a genera

reduced model of the Hodgkin-Huxley equation, which is a P P2

qualitative model of the squid giant axon and often used to J= 1 S kDR g) (9)

describe the behaviors of a single neuron. Note that our FN " Na(l—-a) & it ! ! '

model with the above parameters shows a typical character-

istic of a neuron, namely, it has a stable rest state, and witRote that the matrix]ijoczgi(k")(g“}k")—a) is used instead of

an appropriate amount of disturbance it generates a pulsge usuanjocE(g“i(k")—a)((fk")—a) so as not to give nega-

with a characteristic magnitude of height and width. Thetjve inputs to the neurons that store 0's, because the FN

time series ofu,(t) for §(t)=0, J;=0, andD=0.002 is  model can fire even with the negative input due to the re-

shown in Fig. 1. Itis observed that two spikes are generategoyng effec{34]. It is also noted that Eq¢1) and (9) indi-

with the help of fluctuations. In the following, the parameterscate that the coupling from thigh neuron to théth neuron

are fixed a'dp=$, Jpeak= O.5,t0_= 1_, and¢=0. The validity  yith gi(k")=§j(k")=1 has the strength-gpea/Na. The FN

of these synaptic parameters is discussed later. _ model with our parameters generates a spike when a single
The memory patterns stored in the network are defined agpgp \ith height~0.1 is injected(data not showy thus

m(0D, D)= (b+(1-b)8;) S, 8
(I=i,kspy, 1=j,l=spy).
Following Yoshioka and Shiing9], to make the network

store the above patterns¢®) (1<k=p;,1=<I=p,), the
Fonnection coefficientd;; are defined as

follows. First, pattern vectorst”=(¢7.£5. . .. .6N) (X 0.1Na/gp,,, synchronized EPSPs are required to make the
=1,2,... p) are randomly generated according to the prob-gstsynaptic neuron to generate a spike. Thus, for Ibige
ability density is concluded that the effect of a single presynaptic neuron is
weak, which is consistent with the recent physiological ob-
P()=(1—-a)o(&) +ad(éf - 1), (6)  servationd14].
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The OR pattern vector LORM o
= (¢9R0 ORW - QR of the kth group is defined as
o COR(I) COR(Z)
2
PRI—y| > ¢k (10
i A overlap
1 if x>0,
U(x)= 0 otherwise. (12) Qo 2 g e e e
Generally, the mixed states of stored patterns in ktte FIG. 2. A schematic diagram of six pattern vectors.
group is defined as
P f ! % ¢ (18)
2 = — .
. i N ~ I
i”"*(k>=U( 2, ”—@), (12 =

] ] ) In the following sections, we demonstrate that the target
where® is an arb|trary threSh0|@2]. Note thath mixed patterng(lvl) and theor patterné’OR(l) of the first group can

states are defined by changiflg and for®=0 theor pat-  pe retrieved individually by controlling the fluctuation inten-
terns are obtained. It is known that the mixed states of thgjty p.

stored patterns are also memorized in the nety2s8]. The
storage capacity of ther patterns diverges in the sparse
limit a—0, and the storage capacities of other mixed states
converge to O in the limie—0. Thus theor patterns are In the following, only the case wit=0.1, p;=2, and
“typical” mixed states in the sparse limit. In the following p,=3 is considered for simplicity. The larger the number of
we consider only ther patterns as the mixes states of storedneyrons becomes, the more groups or patterns can be stored,
patterns. and similar results shall be obtained, but we must perform

The external inpug(t) is defined as the numerical experiments with relatively small p,, and

p» mainly because of the limited computational power.

I1l. DEFINITION OF SIX PATTERN VECTORS

S(=xUoU(t), {05, (13 A schematic diagram of six patterng®") (k=1,2)
) =1,2,3) is shown in Fig. 2. In this section, we define these
_ xUo if t=0, (14) six pattern vectors. First, let us denote the set of indices of
0 otherwise, neurons that store 1's in the patteftf" by
where x; is the binary factor that determines whether the Gk, H={i|z*V=11<i<N}. (19

input is injected to théth neuron or not. In the followind/

is fixed atUo=0.1, which is so small that each neuron can-The setg5(1/) in the space of neuron indices are shown in
not fire without the fluctuatiom;(t). Using the binary vector Fig. 3. Note that the number of elements of theGék,|) is
X=(Xq,X, ... Xy) of the input, the input overlapn{<" ’

which measures the correlation between the pattéfy N

=(§(1k"),§§k"), . ,{ﬁ,k")) and the external inputS(t) IG(k,1)|=>, (N =Na. (20)
=[S1(1),S,(1), ... ,Sy(t)], is defined as =1

m{kD=m(z&D x). (15  Because the overlap between the patteffs?) and ¢'2)
(I,#15) is b, the number of elements of the intersection of
To measure the correlation between the pat@éf? and  G(k,I,) andG(k,l,) is calculated to be
the time serieay;(t) (i=1,2,...N), ui(t) is transformed
into the binary seriey;(t) € {0,1} written as G(1,1)

1 if t<t/(t)+Aq,

()= 1
Yt 0 otherwise, (16)

where the parameted is set close to the characteristic
width of the output pulse, and =4 is used in the follow-
ing. Then the overlap between the state of the network and
the patterrny is defined as

G(1,2) G(1,3)

N
1
Mou= e 3 (yi—F)(Gi— 1), 1
U Nf(1-f) ;1 yi=H&=0 @7 FIG. 3. The set$(1)) in the space of neuron indices.
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N (a)
Gk INGK )| =2 2", (21) 250
=
c 200 |
=Na(a+b—ab) (I;#1,). (22) 2
© 150 |
Though the number of elements of the set 5
G(k,1)NG(k,2)NG(k,3) is not determined by the param- % 100 |
etersa andb, we assume that the probability that the element e
of G(k,1)NG(k,2) belongs toG(k,1)NG(k,2)NG(k,3) is T 5ot T
identical with the probability that the element G{k,1) be- ' | R
longs toG(k,3). Under such an assumption, the number of o L SEHLL LT LTI
elements of the s&b(k,1)N G(k,2)NG(k,3) is calculated to 0 50 100 150 200
be t
IG(k,)NG(k,2NG(k,3)|=Na(a+b—ab)2 (23 (b)
1t
Thus the number of elements of the set miLl)
G(1,1)UG(1,2)uG(1,3) is Naj3—3(a+b—ab)+(a+b 08 |
—ab)?], and we denote it all,, in the following.
Without loss of generality, the pattetit™Y) can be defined 0.6 |
m -
as 04 ¢t L) '14'.‘1...__..'!"“"\‘ I rﬂ“""‘é-'*\..""--.'u.,.»‘_.-'f! "‘-
. W OR(1)
1, 1<is<Na=24 o m
(= . (24) 0.2 | (] A
0 otherwise, L
O L L L
and {2 and (¥ are defined so that ther pattern/©R*) 0 50 100 150 200
of the first group satisfies ¢
1, 1<i<N.,, =62 FIG. 4. The result of numerical simulatiog) the firing times
OR(1) o SIS Nan (1.1) OR(1)
i = ) (25 of all the neurons andb) the overlapsm'** and m for N
0 otherwise. =240, b=0.07, andD =0.001. The retrieval of the pattegit™ is

. successful.
The patternst®) (1=1,2,3) are determined randomly so

that they satisfy Eq(8). observed that the overlam®? takes a maximum aD

=0.001. This phenomenon is similar to so-called stochastic
resonance, where a weak input signal is enhanced by its
. . . . . background fluctuations. It is also observed that the overlap

Under the above configurations, numerical simulations,0R(1) (akes a maximum ab=0.0017. Thus it can be con-
are performed forN=240, a=0.1, b=0.07, andm{}® (| ded that the target pattern and e pattern can be re-
=0.6. At the timet=0, the variablesi; andv; are setaround trieved individually by controlling the fluctuation intensity.
the equilibrium, namely;=—1.2 andv;=—0.63. In other words, a pattern selection is induced by the fluctua-

The firing times of all the neurons for the fluctuation in- tions in the system. While the fluctuation-induced pattern
tensity D=0.001 are shown in Fig.(d). It is observed that retrieval has already been reported in HaD], the present
the neurons that store 1's in the pattefft!) start to fire  result indicates that the fluctuation can play more functional
periodically att=>50. Let us denote the overlap between thergles such as pattern selection.
state of the network and the pattesft? asm(™?, and the If the fluctuations are realized by thermal noise, it shall be
overlap between the state of the network anddhepattern  difficult to control their intensities in the biological environ-
{ORD) of the first group asn®™"). The time series of over- ment. On the other hand, it is known that the sum of enor-
laps ™Y and m°"™) are shown in Fig. @). The overlap mous random EPSPs can behave like fluctuations in the
m(-D aimost reaches 1 at=50, thus the retrieval of pattern postsynaptic neurofil4,35. If the sum of EPSPs from the
(Vs successful. other subnetwork in the brain behaves like fluctuations in the

The result of the numerical simulation f@=0.017 is  associative network, it might be natural and realizable to
shown in Fig. 5. At smalt, the patterry) is retrieved, but  control their intensities. It is also known that such a fluctua-
at t=80, it is observed tham®R) exceedsm™Y, thus in  tionlike input can induce SR in a single neuron mof8—
this case theRr pattern;®R1) is successfully retrieved. 41].

From the above results, it can be concluded that the target To realize the fluctuation-induced pattern selection, the
pattern is retrieved for the small fluctuation intensity, and theoverlapb between the patterns in the identical group is also
OR pattern is retrieved for the moderate fluctuation intensityimportant. The asymptotic values of the overlaps as a func-

In Fig. 6, the asymptotic values of overlapg™? and tion of the fluctuation intensitp for b=0 and 0.1 are shown
mORL) are plotted against the fluctuation intensidy It is  in Figs. 7 and 8, respectively. Fbr=0, it is observed that

IV. FLUCTUATION-INDUCED PATTERN SELECTION
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0

200

1l ' ' | OR() |
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0.8

0.6
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0.2

100 150
t

50 200
FIG. 5. The result of numerical simulatiotg) the firing times
of all the neurons andb) the overlapsm®? and m°*%) for N

=240, b=0.07, andD=0.0017. The retrieval of ther pattern
£ORM) is successful.

only the target patterg*? is successfully retrieved and the
retrieval of O™ fails. Forb=0.1, it is observed that only
the or pattern {°R%) is successfully retrieved and the re-
trieval of {9 fails. Thus it is concluded that the overlap

PHYSICAL REVIEW E 64 031904

—oe— m(ld

0.8 | e R ]

0.6
0.4 r

02

0.002 0.003 0.004 0.005
D

FIG. 7. The asymptotic values of the overlapS-Y andm®R*)
as a function of the fluctuation intensify for N=240 andb=0.
Each overlap is numerically obtained by averaging its value over
150<t=<200. Only the target pattern is successfully retrieved.

0.001

0
0

required for the retrieval of patterns. Let us define the peri-
ods to retrieve the pattern€®? and (°R*%) as TV and
TORM) | respectively. The dependences BV and TOR®

on the fluctuation intensit{p for b=0.07 are shown in Fig.

9. It is observed thatT®Y and TORY) diverge atD
=0.0009 and 0.0013, respectively. It is because the retrieval
of patterns is realized by the saddle-node bifurcation with the
parameteD. This dynamics is treated in the next section.

V. THEORETICAL ANALYSIS OF FLUCTUATION-
INDUCED PATTERN SELECTION

In this section, we give a qualitative explanation for the
fluctuation-induced pattern selection. In the following, the
system withp; =1 andp,= 3, namely, a network that stores
three patterng™" (1=1,2,3) with overlapb is considered
for simplicity. The external input is injected only to the neu-
rons in the seG(1,1), namelyx= Y. In the following,
we treat only the dynamics of the neurons in the set

between the patterns in the identical group is important taG(1,1)U G(1,2)UG(1,3) for simplicity.

retrieve both the target pattern and threpattern. In biologi-
cal systems, such a regulation mfmight be realized during
the learning process of patterp4.

As shown in Fig. 10, two variableg, and o, are defined
as the number of the firing neurons and the standard devia-
tion of the firing times in the narrow time interval, respec-

As shown in Figs. 4 and 5, there is a characteristic timedively. The width of the time interval is set at a value around

1

08 r
0.6
m
0.4 r

02

0.001

0 n 1 n
0 0.002 0.003 0.004 0.005
D

FIG. 6. The asymptotic values of the overlapSY andm°R®)
as a function of the fluctuation intensitp for N=240 andb

1

—oe— m(ld

0.8 | e R ]

0.6
m
0.4 r

02

0.001

0 n 1 n
0 0.002 0.003 0.004 0.005
D

FIG. 8. The asymptotic values of the overlapS-Y andm®R®)
as a function of the fluctuation intensify for N=210 andb=0.1.

=0.07. Each overlap is numerically obtained by averaging theEach overlap is numerically obtained by averaging its value over

value over 156t<200.

150<t=<200. Only theor pattern is successfully retrieved.
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500
o T (LD
400 - -m--. TORDT
300
T
200
100

0.001 0.00125 0.0015 0.00175 0.002
D

FIG. 9. The dependences oY and T°RY) on the fluctuation
intensity D for b=0.07. The data are obtained by taking the mean
values of 100—200 samples. The number of samples depends on the
fluctuation intensityD.

the time delay of the network, namely, the period of the
periodic firing. In the following, the discrete-time dynamics
of (0,,z,) (n=0,1,2...) is considered. This analysis is
similar to the theoretical analysis of the propagation of syn-
chronized spikes in the feedforward synfire chgdd]. The
numerical simulations are performed fbra=100, p;=1,
andp,=3.

The numerically obtained flows in ther(z) plane forD

PHYSICAL REVIEW E 64 031904

OR(1)
18

COR(I)

0 02 04 06 08 1 1.2
(&}

FIG. 11. The flows in the ¢,z) plane forD=0.0005.(a) The

=0.0005 are shown in Fig. 14). Note that the numbet, of  numerically obtained flows antb) the schematic flows deduced
the firing neurons is normalized by the number of the neufrom (a).

rons that store 1’s in the pattegi?, namely,Na. Three
attractors in the ¢,z) plane are observed. One(8,0), and
the rest are the attractors corresponding‘fo? and ;OR®).
The reason why the attractor denotitg™*) is not a single
node but a line=2.6 is given later. When the number of the
initially firing neurons is sufficiently small, namelgy=0, it

is observed thatd,,z,) converges tq0,0). In other words,
the memory retrieval fails fazy=0 with D =0.0005 because
almost all the neurons cannot fire with this fluctuation inten-
sity. Note that the system cannot cross the dotted curve about
z,=0.2 shown in Fig. 1@), which shows the boundary of
the basins for the attractof®,0) and {*'Y. This boundary
seems to be the stable manifold of a saddle at abeu)(

250

200
150

100

index of neuron

50 |

SIS

40 50 60
time

(Gn, Zn) (Gn+1, Zn+1)

FIG. 10. The definition of the two variableg, and o,. The

OR(1)
g

OR(1)
g

FIG. 12. The flows in the «¢,z) plane forD=0.0012.(a) The

width of the time interval is set at a value around the time delay ofnumerically obtained flows an¢b) the schematic flows deduced
the network, namely, the period of the periodic firing. from (a).
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3 T T T T T 250
COR(I)

200 |
150 F -

100 . ° T

index of neuron

/) |

ST

HHHHHE, o ) oo

0 02 04 06 08 1 1.2
S FIG. 14. The firing times of all the neurons in the system for

N=240,b=0.07, andD =0.0017. It is observed that the neurons in
FIG. 13. The numerically obtained flows in the,g) plane for  the range from 1 to 24 fire slightly earlier than the other neurons.

D=0.002.
pattern are retrieved individually by controlling the fluctua-

=(0.4,0.2) shown in Fig. Ib). tion in_tensity, in other words, a fchtuation-induced pattern
selection takes place. The theoretical analysis of the above
results is also presented, and it is found that the fluctuation-
ﬁréduced pattern selection is realized by the successive
saddle-node bifurcations parameterized by the fluctuation in-
tensity.
The numerically obtained flows in ther(z) plane forD TheOR pattern may be interpreted as unnecessary patterns
Ehat accompany with stored patterns, but some researchers

=0.002 are shown in Fig. 13. The attractor that denotes th A . .
11) i . ._relate the stabilization of mixed states of stored patterns with
pattern{*~+ disappears because of a saddle-node bifurcation

again, thus the system initially put €2,0) converges to the a “concept formation”[5], and discuss the validity of this
line a{z:Z 6 that denotes the pattegf?'R(l) relation in the physiological experimerit,6]. If the OrR pat-

) tern is meaningful in the information processing, the above
R(1) ,
As prewously r?‘“ed' the patterf? cannot be denoted results suggest that the fluctuations in the system might play
by a single node in thed,z) plane, because all the neurons

) . significant roles in the brain.
that store 1's inZ°R®) cannot synchronize each other as 9

shown in Fig. 14. The step inputs are injected to the neurong There are several sources of randomness in the physi-
o : ) logical environment where neurons operate, such as, ther-
that store 1's in the pattertf™V), thus they fire slightly ear- g P

X mal noise, stochastic properties of synapgdes13, and the

lier than the other neurons. sum of enormous prepsynpaptic inpq&].r{t is difficult to
control the intensity of thermal noise, but, if the stochasticity
VI. CONCLUSIONS AND DISCUSSIONS of synapses or the sum of enormous presynaptic inputs act as
fluctuations, it might be natural to control their intensities by

The associative memory in a pulsed neural network stor h i L d d . It is k h
ing sparse patterns with hierarchical correlations is investiil® Synaptic potentiation and depression. It is known that
tochastic resonance also takes place by fluctuationlike

gated. The stored memory patterns composed of 0/1 digit§ .
are represented by the synchronous periodic firings in thBreSynaptic input36-41.

network. It is found that the retrieval of the target pattern is Izecently, a ps;(/jchol?gical experir_nent Te.Ve.a'ed Lhat a
achieved by adding fluctuations to the system. This phenorﬁl10 eratg magnitu '€ 0 acous.tlc noise minimizes the re-
onse time to retrieve memorig43]. Though our results

enon is similar to so-called stochastic resonance, where 3 based cal simulati hi .
weak input signal is enhanced by its background fluctuation ire based on numerical simulations, this experiment may re-
Though there is no time-dependent input in our network, th ate to the fluctuation-induced memory retrieval and suggests

mechanism of associative memory is driven and enhanced t}pat fluctuations may play a significant role in the real brain.

fluctuations. Besides the target pattern, drepattern that is

the nonlinear superposition of the three patterns that belong
to the identical group is also retrieved with the help of fluc- The autho(T.K.) is grateful to Professor Takehiko Horita
tuations and its optimal fluctuation intensity is larger thanand Professor Kazuyuki Aihara for their stimulating and use-
that of the target pattern. Thus the target pattern andthe ful discussions.

The numerically obtained flows in ther(z) plane forD
=0.0012 are shown in Fig. 18. The attractor at aboui0,0)
disappears because of a saddle-node bifurcation, thus t
system initially put at(0,00 converges to the attractor at
about(0.15,1, which denotes the pattegi®?.
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